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Abstract
Considering the XXX spin-1/2 chain in the framework of the algebraic Bethe
ansatz, we make the following short comment: the product of the creation
operators corresponding to the recently found solution of the Bethe equations
‘on the wrong side of the equator’ [1] is just zero (not only its action on the
pseudovacuum).

PACS numbers: 05.50.+q, 02.10.Yn, 75.10.−b

Consider the periodic XXX spin-1/2 chain with N sites in the framework of the algebraic
Bethe ansatz (ABA) (see, for example, [2]). Let us introduce the Lax operator acting in the
two-dimensional local quantum space hn = C

2 and in the two-dimensional auxiliary space
V = C

2:

Ln(x) =
(

x + is3
n is−

n

is+
n x − is3

n

)
(1)

where si are operators of spin 1/2 and x is an arbitrary complex number (the spectral parameter).
The monodromy matrix is the ordered product over all sites:

T (x) = LN(x)LN−1(x) . . .L1(x) =
(

A(x) B(x)

C(x) D(x)

)
(2)

where A(x), B(x), C(x),D(x) are operators acting in the full quantum space H = ⊗∏N
n=1 hn.

In the framework of ABA, one looks for the eigenvectors of the transfer matrix

t̂ (x) = tr T (x) = A(x) + D(x)

in the form

�({x}) = B(x1)B(x2) . . . B(xl)� (3)
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where � = ∏N
n=1 ωn, s

+
nωn = 0. It follows from the intertwining relations for the monodromy

matrices that vector (3) will be an eigenvector of the transfer matrix when the parameters
x1, . . . , xl satisfy the Bethe equations:

(
xj + i/2

xj − i/2

)N

=
l∏

k �=j

xj − xk + i

xj − xk − i
(j = 1, 2, . . . , l). (4)

Let us denote vectors of the form (3) with parameters xj (j = 1, 2, . . . , l) satisfying
system (4) by �({x}B). It is well known that vectors �({x}B) are the highest weights vectors
with respect to SU(2) generated by J i , i.e.

J +�({x}B) = 0 (5)

and

J 3�({x}B) = (N/2 − l)�({x}B) (6)

where J 3, J ± are operators of the total spin. It is clear that if l > N/2 then �({x}B) = 0.
The solution {x} of (4) with l � N/2 defines the polynomial q(x) of the degree l, whose roots
are {x}

q(x) =
l∏

j=1

(x − xj ). (7)

Let t (x) be the eigenvalue of transfer matrix t̂ (x) corresponding to the eigenvector
�({x}B), i.e. t̂ (x)�({x}B) = t (x)�({x}B). It is a polynomial of degree N. Then the
polynomials t (x) and q(x) satisfy the Baxter equation [4] (we consider the case of the simple
roots):

t (x)q(x) = (x − i/2)Nq(x + i) + (x + i/2)Nq(x − i). (8)

In [1] it was shown that there exists a polynomial p(x) of degree N − l + 1 with roots
satisfying the Bethe equation (4)4 and

t (x)p(x) = (x − i/2)Np(x + i) + (x + i/2)Np(x − i) (9)

with the same t (x) as in (8). Actually, there exists a one-parametric family of such
polynomials

p(x, α) = p(x) + αq(x) (10)

so there is the one-parametric family of sets of parameters ({x})—the zeros of p(x, α) which
belongs to the ‘beyond the equator’ case. Let us denote these zeros as xi(α) (it is clear that
the zeros of polynomial (10) depend on α). Now consider the creation operator

B(α) = B(x1(α))B(x2(α)) . . . B(xN−l+1(α))

corresponding to the beyond the equator case. The following statement is valid:

Theorem.

B(α) = 0. (11)

Proof. Consider its action on the basis constructed using the Bethe vectors (in the case of
finite {x}, Bethe vectors are the highest weights); to obtain the rest of the eigenvectors, we
use the operator J − (it commutes with the transfer matrix), which can also be considered as a
creation operator, since B(x) = xN−1(J − + o(1/x)) when x → ∞; on the hypothesis of the
4 See also the interesting discussion of the ‘beyond equator’ solution in [5].
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completeness of the Bethe ansatz (see [2, 3]). We immediately see that its action is zero due
to [B(x), B(y)] = 0, [B(x), J −] = 0 and B(α)� = 0. So, the action of B(α) is zero onto
each vector of the basis, then

B(α) = 0. (12)

�

To see that this fact is nontrivial let us consider the concrete examples. Let us first analyse
the structures of the product of B-operators. We have the following commutation relation:

[B(x), J 3] = B(x) (13)

so for the product of l B-operators

eβJ 3
B(x1) . . . B(xl) e−βJ 3 = e−lβB(x1) . . . B(xl) (14)

and we see that each term of the expansion of this product necessarily contains the products
of l-operators s−

j with different j , since (s−)2 = 0 (so if l > N , this product is zero). At
N = 6, product of four B-operators (l = 4 > 3, i.e. this is the ‘beyond the equator’ case):
B(x1)B(x2)B(x3)B(x4), as was shown by the explicit construction of this product, contains
terms proportional to s+

2 s−
1 s−

3 s−
4 s−

5 s−
6 , s+

3 s−
1 s−

2 s−
4 s−

5 s−
6 , s+

4 s−
1 s−

2 s−
3 s−

5 s−
6 and s+

5 s−
1 s−

2 s−
3 s−

4 s−
6

with non-zero coefficients polynomials in x1, x2, x3, x4. The appearance of such terms is not
excluded by (14). Their action on the vacuum � is identically zero, so if x1, x2, x3, x4 satisfy
the system (4), then the action of these terms become zero; the only terms whose action on
the vacuum � is nonzero are the terms proportional to s−

1 s−
2 s−

3 s−
4 . Such solutions do exist, for

example, roots of the polynomial

p(x) = x4 − 6√
13

x3 + x2 − 9

16
(15)

satisfy system (4). This solution corresponds to the total spin J = 0, the eigenvalue of the
transfer matrix

t (x) = 2x6 +
9

2
x4 +

23

8
x2 − 3√

13
x − 1

32
.

The corresponding eigenvector can be constructed, using the roots of the polynomial

q(x) = x3 +
1

12
x +

1

4
√

13
(16)

and the one-parametric family B(α) = 0 corresponds to the roots of the polynomial

p(x, α) = x4 − 6√
13

x3 + x2 − 9

16
+ α

(
x3 +

1

12
x +

1

4
√

13

)
. (17)

The products of l-operators B(x) with l > N/2, considered above, are not used for the
construction of the eigenvectors of the transfer matrix. However, we would like to emphasize
that there is another important example, when the product of B-operators corresponding to the
case l � N/2 is zero:

B(−i/2)B(i/2) = 0.

This product corresponds to the polynomial

q(x) = x2 + 1/4

and

t (x) = (x + i/2)N−1(x − 3/2i) + (x − i/2)N−1(x + 3/2i)
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and at even N � 4, corresponds to some eigenvector of the transfer matrix. In paper [6],
it was shown how one can use the ABA to construct the eigenvector corresponding to this
exceptional solution. If we consider the following vector, B(−i/2 + ε + 2iεN)B(i/2 + ε)� at
ε → 0, then

B(−i/2 + ε + 2 iεN)B(i/2 + ε)� = εN�({−i/2, i/2}) + O(εN+1)

where �({−i/2, i/2}) is the desired eigenvector. The proof of our statement holds true in this
case too, since we use again only B-operators to construct this eigenvector.
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